Lancope logo

Research Engineer / Data Scientist

Lancope
Full-time
Remote
Data Science and Analytics

Research Engineering / Data Scientist

Lancope’s Office of the CTO seeks an innovative Research Engineer / Data Scientist to develop new techniques in applying big data to network security. This is an exciting opportunity to join a growing team to invent and apply techniques in applied statistics, graph analysis, and machine learning toward telemetry analysis, data mining and threat detection.

 
Main Responsibilities 
  • Conduct literature reviews and keep abreast of current techniques in applied statistics, machine learning, and big data 
  • Invent and/or apply new techniques to telemetry data to identify new security threats. 
  • Develop and document proofs-of-concept (POCs) to demonstrate the efficacy, performance, and scalability of new techniques 
  • Publish and present research findings, including methodology and measured efficacy improvements 
  • Partner with threat-research and engineering teams to turn successful POCs into product features and actionable intelligence 

 

Key Attributes 
  • Experience and desire to own innovative ideas from inventions, through proof-of-concept, to engineering and deployment
  • Brings considerable experience, motivation and organization to make an impact on threat detection
  • Intense curiosity to drive hands-on work to complete all phases of applied research

 

We are looking for candidates that have: 
  • Experience in data manipulate using interpreted language (e.g. Python) and JVM language (e.g. Java or Scala) 
  • Extensive hands-on experience with Hadoop ecosystem. HBase and Spark highly desirable. 
  • Hands-on experience with distributed graph databases (e.g. Titan) 
  • Experience turning research ideas into actionable designs and POCs 
  • Comfortable working in an open, dynamic, applied-research team where multiple on-going projects and open collaboration are the norm 
  • Strong verbal, written, analytical, and persuasive skills. Able to communicate effectively with both technical and non-technical colleagues. 
  • Facility with applied statics or machine learning 
  • Experience in data mining and working with large, diverse, unfiltered data sets highly desirable. 
  • Advance degree in relevant field (PhD preferred) or commensurate direct experience